If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-3762=0
a = 1; b = 2; c = -3762;
Δ = b2-4ac
Δ = 22-4·1·(-3762)
Δ = 15052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{15052}=\sqrt{4*3763}=\sqrt{4}*\sqrt{3763}=2\sqrt{3763}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{3763}}{2*1}=\frac{-2-2\sqrt{3763}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{3763}}{2*1}=\frac{-2+2\sqrt{3763}}{2} $
| x+2x-3762=0 | | 12=9x^2 | | 9p+6=3(p+8 | | 0.37w=1.036 | | 9f=1/5 | | 3f=1/2 | | 9=3(5c-2) | | 4f=1/8 | | 4f=1/2 | | X^2+1x-12=26 | | 4y+5=2y+6 | | 2x^2+3x-2=63 | | 130+25+13x-1=180 | | 3=2x+1=13 | | 7x^2-192x=208 | | 18+24+90+2x=180 | | x^2+29x-1272=0 | | 44+66+2x+24=180 | | 3/5x50=30 | | 7p^2-192p-208=0 | | 3(2x-1)+7=6x-3-2(2-3x) | | 4(2-x)+1=2x+2=5(1-4x) | | (4x-2)^2+6x=25 | | 162/x=14/28 | | 12x-6x+5+4x=-10x+7 | | 28-8y=20 | | 186/x=12/24 | | 5x-4=(1/5)(5+20x) | | 29x-13=14x-13 | | (11x-4)/x=3 | | 90=2x+x+20+50 | | 19x^2+25x=0 |